Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 trường ĐHSP Hà Nội

  • Đề thi vào lớp 10

Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 trường ĐHSP Hà Nội

Xin chào quý thầy cô và các bạn học sinh! Sytu xin giới thiệu đến quý vị đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 của trường ĐHSP Hà Nội. Đề thi này bao gồm đáp án và lời giải chi tiết để giúp các bạn ôn tập hiệu quả.

Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 trường ĐHSP Hà Nội:

– Cho tam giác ABC nội tiếp đường tròn (O) có bán kính R. Điểm D và E là hai điểm cố định trên cát tuyến qua C sao cho D nằm giữa C và E. Gọi M là giao điểm thứ hai của hai đường tròn ngoại tiếp tam giác BCD và ACE. Chứng minh rằng: Tứ giác OBME là tứ giác nội tiếp; CD * CE = CO * R * R; M luôn di chuyển trên một đường tròn cố định.

– Tìm tất cả các số nguyên dương N sao cho N có thể biểu diễn duy nhất dưới dạng N = 2^(x+y) với x, y là hai số nguyên dương.

– Cho a, b, c là ba số nguyên dương sao cho mỗi số trong ba số đó đều là lũy thừa của 2. Biết rằng phương trình ax^2 + bx + c = 0 có hai nghiệm nguyên. Chứng minh rằng hai nghiệm của phương trình trên bằng nhau.

Hy vọng rằng đề thi này sẽ giúp các bạn tự tin và chuẩn bị tốt nhất cho kỳ thi sắp tới. Chúc các bạn thành công!

Đánh giá bài viết cho thầy/cô vui 

0 / 5 0

Your page rank:

Avatar of Phan Quang
       

Về tác giả : Phan Quang

Giáo viên Toán học xuất sắc, sinh năm 1985 tại Hà Nội. Tốt nghiệp Đại học Sư phạm Hà Nội với bằng cử nhân Toán học, thầy có hơn 10 năm kinh nghiệm giảng dạy cấp 2 và ôn thi vào 10. Năm 2024, thầy sáng lập website daygioi.com – nền tảng giáo dục trực tuyến miễn phí, cung cấp bài giảng video, bài tập tương tác và tài liệu ôn tập cho hàng ngàn học sinh Việt Nam. Với phong cách dạy gần gũi, sáng tạo, thầy luôn khơi dậy niềm đam mê Toán học qua ví dụ đời thường. Được phụ huynh và học sinh yêu mến, thầy là nguồn cảm hứng cho thế hệ giáo viên trẻ.

       

Xem nhiều bài của tác giả : Phan Quang