Đề thi Olympic 27/4 lớp 11 môn Toán năm 2017 2018 sở GD và ĐT Bà Rịa Vũng Tàu

daygioi

  • Đề HSG Toán 11

Đề thi Olympic 27/4 Toán lớp 11 năm 2017 – 2018 sở GD và ĐT Bà Rịa – Vũng Tàu

Đề thi Olympic 27/4 Toán lớp 11 năm 2017 – 2018 sở GD và ĐT Bà Rịa – Vũng Tàu là một bộ đề gồm 1 trang với 5 bài toán tự luận, thời gian làm bài là 180 phút. Kỳ thi được tổ chức vào ngày 06 tháng 03 năm 2018 nhằm tuyển chọn học sinh giỏi Toán lớp 11 trên toàn tỉnh Bà Rịa – Vũng Tàu. Đề thi cung cấp lời giải chi tiết để học sinh có thể ôn tập và kiểm tra kiến thức của mình.

Trích dẫn một số câu hỏi trong đề thi Olympic 27/4 Toán lớp 11 năm 2017 – 2018:

1. Cho ∆ABC không tù và thỏa mãn 2((cosA)^3 + (cosB)^3 + (cosC)^3) + 3cosAcosBcosC = 9/8. Chứng minh ABC là tam giác đều.

2. Tìm tất cả các giá trị của a để giới hạn lim x(ax + √(x^2 + 2x) – 2√(x^2 + x)) khi x → +∞ có giá trị hữu hạn.

3. Chứng minh rằng B là trực tâm của tam giác KMN trong trường hợp đặc biệt khi đường thẳng qua A và vuông góc với mặt phẳng (MAN) cắt (P) tại điểm K.

4. Gọi α, β lần lượt là số đo các góc tạo bởi BM với mặt phẳng (AKN), BN với mặt phẳng (AKM). Chứng minh (cosα)^2 + (cosβ)^2 = 1/2 và tìm giá trị nhỏ nhất của α + β.

Đây là một đề thi mang tính chất thách thức, đòi hỏi sự tư duy logic, sáng tạo và kiến thức Toán sâu rộng từ học sinh. Hy vọng đề thi sẽ giúp học sinh rèn luyện kỹ năng giải bài toán và nắm vững lý thuyết để đạt kết quả cao trong học tập.

Viết một bình luận